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as an initial value problem with appropriate boundary con-
ditions. In this paper, we seek the self-similar solutionsComputations of self-similar solutions of the compressible Euler

equations as a boundary value problem in similarity coordinates of the compressible Euler equations as a boundary value
(j 5 x/t, h 5y/t) are presented. Two new implicit methods namely problem after a suitable self-similar transformation is
the implicit Godunov method and the implicit Equilibrium Flux made. The self-similar transformation reduces the number
Method are presented. The Jacobians for the implicit methods are

of independent variables by one. The solution we seek isanalytically evaluated. In general the self-similar solutions exhibit
a steady solution in the (j ; x/t, h ; y/t) space. We believesharper discontinuities than corresponding solutions of the initial

value problem. Q 1997 Academic Press that, intuitively, it is easier to deal with a steady state
solution than one which is time-dependent. In addition,
many of the test problems in the literature on numerical

I. INTRODUCTION methods of Euler equations have self-similar solutions. The
most commonly used test problem is the one-dimensional

Many physical systems are mathematically approxi- Sod’s shock-tube problem [6], the solution of which is self-
mated as systems of hyperbolic conservation laws. A com- similar in the variable j ; x/t.
mon example, and one that will be dealt with at length in In this paper, the discretized form of the self-similar
this paper, is the inviscid compressible flow of a gas for equations are solved using two methods: one seeks the
which the governing equations are the compressible Euler steady state by an implicit method while the other is a fixed
equations. Considerable work has been undertaken to point iteration method. The numerical fluxes are evaluated
study the refraction of a shock at a gaseous interface (see, using either the Equilibrium Flux Method (EFM) method
for example, work of Henderson et al. [1] who investigated [7] or the Godunov method [8]. Note that implicit methods
the transition from regular to irregular refraction). An- usually involve two major operations: the solution of a
other problem which has been the focus of several studies linear system of equations is one while the other one is
is the transition from regular to Mach reflection of a shock the evaluation of the flux Jacobians. In this paper, the
at a solid wedge (see, for example, the review paper by Jacobians for the implicit method are evaluated analyti-
Hornung [2]). One common feature of both the shock- cally for the EFM and the Godunov method.
refraction and the shock-reflection problems is that the The outline of the paper is as follows. In Section II we
solution depends only upon (x/t, y/t). Such solutions have present the Euler equations in self-similar form and classify
been referred to as ‘‘pseudo-stationary’’ solutions of the these. In Section III we present two methods to obtain the
Euler equations because they are fixed points of the partial self-similar solution numerically. In Section IV we present
differential equations resulting from a self-similar transfor- the following one-dimensional examples (for which the
mation of the Euler equations (see, for example, Refs. self-similar solutions exist): (a) Sod’s shock-tube problem,
[1–5]). Another example of a self-similar flow is that of (b) a nonlinearizable Riemann problem, and (c) the shock
shock-diffraction around a right angle corner. interaction with a contact discontinuity. The following two-

The solution to self-similar flows is typically obtained dimensional examples are presented in Section V: (a) the
by solving the compressible Euler equations numerically shock reflection at a solid ramp, and (b) the shock refrac-

tion at a gaseous interface. The details of derivations of
the Jacobians for the implicit methods are relegated to1 Present address: MS T27A, MRJ Inc., NASA Ames Research Center,

Moffett-Field, CA 94035-1000. Appendixes A and B.
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II. SELF-SIMILAR FORMULATION Note that F̃ (or G̃) is equivalent to the flux of mass, momen-
tum, and energy through a surface locally moving with a

A. General Formalism speed of j (or h).

Consider a system of hyperbolic conservation laws,
C. Classification of the Self-similar PDEs

For the purposes of classifying the self-similar partial­U
­t

1
­Fi(U)

­xi
5 0, (1)

differential equations (Eq. 6) it is convenient to rewrite the
compressible Euler equations in non-conservation form as

U ; U(xi , t) : Rm 3 R R Rn, and Fi(U) : Rn R Rn. We
seek solutions of the form Ũ(ji ) ; U(xi , t) such that ji ;

Vt 1 AVx 1 BVy 5 0, (8)xi/(Vt) [ Rm. Under the transformation ji ; xi/t (V ; 1
without loss of generality), Eq. (1) reduces to

V 5 hr, u, v, pjT. (9)
˜

mŨ 1
­Fi(Ũ, ji )

­ji
5 0, (2)

The matrices A and B are

˜where Fi(Ũ, ji ) ; Fi(Ũ) 2 jiŨ.

B. Compressible Euler Equations

Consider the compressible Euler equations in two space
A 5

u r 0 0

0 u 0
1
r

0 0 u 0

0 cp 0 u

, B 5

v 0 r 0

0 v 0 0

0 0 v
1
r

0 0 cp v

. (10)dimensions written below in conservation form

Ut 1 Fx(U) 1 Gy(U) 5 0, (3)
3 4 3 4

where
After the self-similar transformation Eq. (8) reduces to

U(x, y, t) 5 hr, ru, rv, E jT,

(A 2 Ij)Vj 1 (B 2 Ih)Vh 5 0. (11)F(U) 5 hru, ru2 1 p, ruv, (E 1 p) ujT, (4)

G(U) 5 hrv, ruv, rv2 1 p, (E 1 p)vjT,
Assuming (A 2 Ij) to be non-singular, we obtain the quasi-

where r is the density, (u, v) is the velocity vector, p is the linear form
pressure, and E is the total energy per unit volume. We
assume a perfect gas equation of state throughout the paper

Vj 1 (A 2 Ij)21(B 2 Ih)Vh 5 0. (12)and thus close the above set of partial differential equations
by the relation

The four eigenvalues of (A 2 Ij)21(B 2 Ih) are

p 5 (c 2 1) SE 2
1
2

r(u2 1 v2 )D, (5)

l1,2 5
ṽ
ũ

, l3,4 5
ũṽ 6 c(ũ2 1 ṽ2 2 c2 )1/2

ũ2 2 c2
, (13)

where c is the ratio of specific heats of the gas. For simplic-
ity c is assumed constant in space and time, and is set to 1.4.

Under the similarity transformation (j ; x/t, h ; y/t), where u 5 u 2 j and v 5 v 2 h, and c2 5 cp/r defines
Eq. (3) transforms to the sound speed. We define a self-similar Mach number as

2Ũ 1 F̃j 1 G̃h 5 0, (6)

M̃ 2 5
(ũ2 1 ṽ2 )

c2 . (14)
where

F̃ 5 hr(u 2 j), ru(u 2 j) 1 p, r(u 2 j)v, E(u 2 j) 1 pujT, If M̃ , 1 ($ 1) then the eigenvalues l3,4 are complex
conjugates (real). This implies that the system of equationsG̃ 5 hr(v 2 h), ru(v 2 h), rv(v 2 h) 1 p, E(v 2 h) 1 pvjT.

(7) (Eq. 6) is of the mixed hyperbolic-elliptic type.



SELF-SIMILAR SOLUTIONS FOR EULER EQUATIONS 329

III. NUMERICAL METHODS TO SOLVE THE
UL,i, j11/2 5 Ui, j 1 S­U

­hDi, j

Dh
2

,SELF-SIMILAR PDES
(17)

In this section, we present two methods to solve Eq. (6)
UR,i, j11/2 5 Ui, j11 2 S­U

­hDi, j11

Dh
2

.numerically. The first method is an implicit method (a la
Newton–Raphson) while the second one is a fixed point
iteration method (a la Jacobi). Therefore, the flux functions at the cell interfaces ji11/2 and

The domain, V ; [jl , jr ] 3 [hl , hr ], is divided into a hj11/2 may be written as
uniform grid with each computational zone of area Dj 3
Dh. The size of the grid is N 3 M such that N 5 (jr 2 jl )/

F n11
i11/2, j ; F(U n11

L,i11/2, j , U n11
R,i11/2, j ),Dj and M 5 (hr 2 hl )/Dh. The requirement of a uniform

(18)grid is not strict and the methods are easily extensible to G n11
i, j11/2 ; G(U n11

L,i, j11/2 , U n11
R,i, j11/2 ).

stretched grids.

A. Implicit Method A Taylor series expansion yields

The discrete form for Eq. (6) is written at iteration n 1
1 as (dropping the p over U, F, and G)

F n11
i11/2, j 5 F n

i11/2, j 1 S ­F
­UL

Dn

i11/2, j
dU n

L,i11/2, j

2U n11
i, j 1

F n11
i11/2, j 2 F n11

i21/2, j

Dj
1

G n11
i, j11/2 2 G n11

i, j21/2

Dh
5 0, (15)

1 S ­F
­UR

Dn

i11/2, j
dU n

R,i11/2, j 1 ? ? ?, (19)

where i 5 1, ..., N, j 5 1, ..., M, and Ui, j ; U(ji , hj ) is the
numerical approximation to the exact solution U(j, h) of

G n11
i11/2, j 5 G n

i, j11/2 1 S ­G
­UL

Dn

i, j11/2
dU n

L,i, j11/2the system of partial differential equations (Eq. (6)). Fur-
thermore, Ui, j is the cell average of the numerical
solution in the cell (i, j) which covers a domain [ji21/2 ,

1 S ­G
­UR

Dn

i, j11/2
dU n

R,i, j11/2 1 ? ? ?, (20)ji11/2 ] 3 [hj21/2 , hj11/2 ] and whose geometric center is given
by (ji , hj ).

We develop the method further for a flux function of where
the type F ; F(UL , UR ), i.e., the flux in the j direction
depends on the left and right states at the cell interface.

dU n
K,l 5 U n11

K,l 2 U n
K,l ,Examples of such flux functions include EFM, Godunov

(21)method, Roe method [9], etc. In this paper, we focus on K 5 L, R, l 5 (i 1 1/2, j), (i, j 1 1/2).
the Godunov and the EFM methods.

We now assume that the left and right states at a cell
Denote the Jacobians of the fluxes F and G in Eq. (20) asinterface are obtained by fitting linear profiles in each

direction in each cell and applying monotonicity con-
straints (see Appendix C for details of the linear recon-
struction procedure). The slopes for the linear profiles are AK,i61/2, j 5 S ­F

­UK
D

i61/2, j
,

a function of the cell average values in the cell and its (22)
neighbors. The linear reconstruction procedure makes the
solution formally second order accurate. Alternatively one BK,i, j61/2 5 S ­G

­UK
D

i, j61/2
, K 5 L, R.

may use the piecewise parabolic method [10] or the essen-
tially non-oscillatory reconstruction procedures [11]. The

We choose the following flux functions: (a) the Godunovlinear reconstruction gives the left and right states at the
method in which the exact one-dimensional nonlinear Rie-cell interface ji11/2 as
mann problem is solved at each cell interface and (b) the
Equilibrium Flux Method. For the choice (a) above the
method is referred to as the implicit Godunov method;UL,i11/2, j 5 Ui, j 1 S­U

­j
D

i, j

Dj

2
,

and for (b) the method may be referred to as the implicit(16)
Equilibrium Flux Method. The derivations of the Jacobians

UR,i11/2, j 5 Ui11, j 2 S­U
­j
D

i11, j

Dj

2
, (Eq. (22)) for the implicit Godunov method and the im-

plicit Equilibrium Flux Method are given in Appendixes
A and B, respectively.and the left and right states at the cell interface hj11/2 are
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Using Eqs. (20), (16), (17), (21), and (15) we obtain the vector of NM unknowns (and each unknown is a vector
of 4 components) and is given by

2dU n
i, j 1 (An

L,i11/2, j 2 An
R,i21/2, j 1 B n

L,i, j11/2 2 B n
R,i, j21/2 ) dU n

i, j

dU n 5 (dU n
1,1 , dU n

2,1 , ? ? ? , dU n
N,1 ,

2 An
L,i21/2, jdU n

i21, j 1 An
R,i11/2, jdU n

i11, j 2 Bn
L,i, j21/2dU n

i, j21 (28)
dU n

1,2 , ? ? ? , dU n
N,2 , ? ? ? , dU n

1,M , ? ? ? , dU n
N,M )T.

1 Bn
R,i, j11/2dU n

i, j11 1 S 5 R n
i, j . (23)

R is the residual vector of size NM and each component
The term S solely contains the terms involving the slopes of R is a vector of four components. A direct inversion
which are used to obtain the linear profile in the cell and of A n is impractical. Moreover for simplicity of parallel
is given by implementation we adopt the following strategy. We multi-

ply Eq. (27) by g(!1) and add the term dU n11 5 0. Finally
we approximate, dU n11 P dU n which is reasonable when

2S 5 (An
L,i11/2, j 1 An

R,i21/2, j ) d n S­U
­j
D

i, j we are near convergence. Thus we have

(I 1 gA n ) dU n 5 gR n, (29)2 An
L,i21/2, j d n S­U

­j
D

i21, j
2 An

R,i11/2, j d n S­U
­j
D

i11, j (24)

where (I 1 gA n ) is also a block penta-diagonal matrix.1 (Bn
L,i, j11/2 1 Bn

R,i, j21/2 ) d n S­U
­hDi, j The left hand side of Eq. (29) is now approximated as a

product of two block tri-diagonal matrices as
2 Bn

L,i, j21/2 d n S­U
­hDi, j21

2 Bn
R,i, j11/2 d n S­U

­hDi, j11
,

(I 1 gA n
x )(I 1 gA n

y ) dU n 5 gR n, (30)
where

i.e., we used (I 1 gA ) 5 (I 1 gAx )(I 1 gAy) 1 O(g2 ). The
solution procedure for block tri-diagonal linear systems is

d n S­U
­z
D

i, j
5 S­U

­z
Dn11

i, j
2 S­U

¶z
Dn

i, j
, z 5 j, h. (25)

a well known algorithm and a discussion of this is omitted in
the interest of brevity. We solve the two block tri-diagonal
systems in succession and obtain the solution vector dU n.For a first order method S vanishes identically. For a
To monitor convergence we compute the Ly norm of R.formally second order accurate method S contains terms
The convergence criterion isinvolving the slope at the (n 1 1)st and the nth iteration.

For example, the slope in the j direction in the (i 2 1, j)th
iR iy , « P 10210.cell is a complicated function of Ui2k, j , k 5 2, 1, 0, which

incorporates some form of slope-limiting (the exact slope
B. Fixed Point Iteration Methodfitting procedure is given in Appendix C). For simplicity,

in our formulation we set S 5 0. This enables us to write Due to the inherent complications in the implicit
the left hand side of Eq. (23) as a product of a block penta- method, such as those involved in the evaluation of the
diagonal matrix and the vector of unknowns dU n. We ratio- Jacobians and inversion of matrices, it may be preferable
nalize that at convergence the change in slopes from the in certain instances to solve the equations in an explicit
nth to the (n 1 1)st iterations would be zero. manner. A fixed point iteration method is outlined below.

The right hand side of Eq. (23), R n
i, j , is the residual and The partial differential equations (Eq. (6)) are discret-

is simply the discrete approximation to the partial differen- ized as
tial equations at iteration n, i.e.,

aU n11 1 bU n 5 SF n
i11/2, j 2 F n

i21/2, j

Dj
1

G n
i, j11/2 2 G n

i, j21/2

Dh D ,
R n

i, j 5 2U n
i, j 1

F n
i11/2, j 2 F n

i21/2, j

Dj
1

G n
i, j11/2 2 G n

i, j21/2

Dh
. (26)

(31)

In other words, at each iterate, the system of equations such that a 1 b 5 2. Rewriting it explicitly we obtain
we solve is

U n11 5 2
b
a

U n 2
1
aA ndU n 5 Rn, (27)

(32)
where A is a block penta-diagonal matrix of size NM 3 SF n

i11/2, j 2 F n
i21/2, j

Dj
1

G n
i, j11/2 2 G n

i, j21/2

Dh D .
NM and each block is a 4 3 4 matrix. The vector dU n is
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We iterate until the residual R (the same as in the implicit technique we did not have to invert the block penta-diago-
nal matrix and the communication involved only the ghostmethod) meets the convergence criteria. Although, the

main advantage of this method is its simplicity, the disad- boundaries. In other words, the explicit method involved
only nearest neighbor communications.vantages could be either a very slow convergence to the

solution or a complete lack of convergence. The lack of For the two-dimensional example of shock refraction
presented in Section V-B, the execution time on the Intelconvergence may occur if the fixed point iteration tech-

nique goes in to a limit cycle. The exact conditions when Paragon is shown in Table I. The number in the bracket
next to the execution time is speed-up which is normalizedthe fixed point iteration fails to converge are not known.

It is possible that a different initial guess may mitigate this to unity for four processors. The ratio of execution time
for the implicit Godunov method to the explicit Godunovproblem. For fixed point iteration techniques it is known

that the magnitude of the Jacobian of the right hand side method varied from 2.6 to 2.8 while the ratio of execution
time for the implicit EFM to the explicit EFM varied fromof Eq. (32) must be less than unity. This places a restriction

on the values of a and b. 3.1 to 3.4. One technique to decrease the execution time
for the implicit methods is to freeze the Jacobians and

C. Parallel Implementation recalculate them every ‘‘n’’ iterations where typically n 5
5, 10.Both the implicit and the fixed point iteration technique

were implemented on the 512-node Intel Paragon at Cal- IV. ONE-DIMENSIONAL EXAMPLES
tech. The domain decomposition is achieved by slicing the
domain in the h direction, i.e., the solution vector U is In one dimensions, the self-similar equations (Eq. (6))

reduce to ordinary differential equations. Although in thedistributed row-wise. For the implicit method, we solve
Eq. (30) as previous section we focused on developing the methods

in two dimensions, the implementation of the above meth-
ods in one dimension is straightforward. For the implicit(I 1 gAx )n dU* 5 gR n. (33)
method in one dimension, we invert a block tri-diagonal
system only. When we are close to convergence, the param-This linear block tri-diagonal system is solved using the

Intel library routines. After the vector dU* is obtained on eter g can be made very large and thus the method reduces
to a Newton–Raphson method.each processor we distribute it column-wise (denote the

rearranged vector (dU*)T ) and then solve the equation For some examples, we present comparisons of the self-
similar computations with solutions obtained by solving
the corresponding initial-value problem, i.e., solutions of(I 1 gAy)n dU n 5 (dU*)T. (34)
Eq. (3). These solutions are obtained by a second-order
accurate in space and time Godunov method or EFM. TheWe adopted the NX message passing library for the Intel

paragon. The ease of solving the block tri-diagonal systems second order accuracy in space is obtained by the same
linear reconstruction used for the self-similar calculations.was instrumental in using the decomposition of the block-

penta-diagonal system in Eq. (30). A ghost boundary was The time marching procedure is a second order accurate
Runge–Kutta time integration. The fluxes for the Godunovimplemented for each array distributed on each processor.

For the implicit methods, each processor communicates method are obtained by solving a one-dimensional Rie-
mann problem at each cell interface [8]. For EFM, the fluxdata with every other processor. The communications were

essentially done in an asynchronous fashion to avoid com- at a cell interface is calculated as in the Appendix B but
with j 5 0.munication delays. Of course, for the fixed point iteration

TABLE I

Execution Times for 100 Iterations for the Self-similar Solution of the Two-Dimensional Shock-Refraction Problem
on a 192 3 96 Mesh

No. processors Explicit EFM Implicit EFM Explicit Godunov Implicit Godunov

4 124 (1.00) 420 (1.00) 179 (1.00) 504 (1.00)
8 65 (1.91) 212 (1.98) 96 (1.86) 265 (1.90)

16 35 (3.54) 109 (3.85) 51 (3.51) 137 (3.68)
32 19 (6.53) 60 (7.00) 28 (6.39) 74 (6.81)

Note. The execution time is given in seconds for the Intel Paragon. The number in the bracket is the speed-up which is normalized to unity for
four processors.
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FIG. 1. Self-similar solution for Sod’s shock-tube problem. The dotted
FIG. 3. Self-similar solution for Sod’s shock-tube problem. The dotted

line is the analytical solution, while the symbols denote the numerical
line is the analytical solution, while the symbols denote the numerical

solution (implicit Godunov method).
solution (implicit EFM).

A. Sod’s Shock-Tube Problem

has an analytical solution and the self-similar solution re-Sod’s shock-tube problem is considered as one of the
produces the analytical solution accurately. An added ad-standard tests of a numerical method for compressible
vantage of the solution in self-similar form is that the waveEuler equations [6]. In this problem, the initial conditions
velocities are equal to the coordinate j and can be easilyin the gas are
obtained from the plot; for example, we observe that the
shock and contact speeds are 1.75 and 0.92, respectively.
The self-similar solution was also computed using the im-(r, u, p) 5H(1, 0, 1)

(0.125, 0, 0.1)

; x , 0

; x . 0.
(35)

plicit EFM method. The results are plotted in Fig. 3.
In actual practice, the residual at each point has three

The solution to this problem is a self-similar solution con- components, one each for the continuity, momentum, and
sisting of a shock wave, a contact discontinuity, and a energy equations. The Ly norm of the residual for the
rarefaction. The results are plotted in Fig. 1. This problem continuity and the energy equations is plotted in Fig. 2

and Fig. 4 for the implicit Godunov and the implicit EFM

FIG. 2. Residual for Sod’s shock-tube problem using implicit Godu-
nov method. FIG. 4. Residual for Sod’s shock-tube problem using implicit EFM.
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FIG. 6. Self-similar solution for the non-linearizable Riemann prob-
lem using the implicit Godunov method.FIG. 5. Residual for Sod’s shock-tube problem using the fixed point

iteration technique. The fluxes were calculated by the Godunov method.

it must be noted that the Roe method with an entropy fix
does provide a solution. The solution to this problem is amethod, respectively. The Ly norm is less than 10210 at the
self-similar solution and consists of two rarefaction waves,last iteration and thus the discrete approximations of the
one moving to the left and the other moving to the right.self-similar form of the continuity and the energy equations
Furthermore, this solution can be determined analytically.were satisfied to nearly machine precision. The value of g
The solution to the initial-value problem (Eq. (3)) waswas chosen as 0.001 for the first few iterations and was
computed by a second order space and time accurateincreased during the computation. The same problem was
Godunov method until time t 5 1. The temperature in thecomputed using the fixed point iteration scheme and using
self-similar solution, solution to the initial-value problemthe Godunov method to compute the fluxes. The results
at t 5 1, and the analytical solution are plotted in Fig. 6.are identical to those in Fig. 1 and hence omitted. The
Good agreement between the self-similar and the analyti-convergence history (Fig. 5) clearly indicates that while
cal solutions is observed, and we note that the self-similarthe fixed point iteration scheme may be simpler to imple-
solution reproduces the slope discontinuity at the head andment, it suffers from extremely slow convergence even for
tail of the rarefaction quite accurately. On the other hand,this simple problem.
the solution to the initial-value problem exhibits a numeri-
cal artifact in the center of the domain and also the slopeB. Nonlinearizable Riemann Problem

Another example which tests the robustness of the
method is the solution of the Riemann problem with the
initial conditions

(r, u, p) 5H(1, 22, 0.4)

(1, 2, 0.4)

;x , 0

;x . 0.
(36)

According to a proposition by Einfeldt et al. (Proposition
3.1 in [12]), if the following conditions are satisfied

4crE
3c 2 1

2 (ru)2 . 0, (c 2 1)rE 2 (ru)2 # 0 (37)

then the Riemann problem has a solution with positive
density and internal energy but is nonlinearizable. There-
fore, this a stringent test and numerical methods relying on
the solution of a linearized Riemann problem (for example, FIG. 7. Residual for the non-linearizable Riemann problem using the

implicit Godunov method.the Roe method [9]) fail to provide a solution. However,
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FIG. 10. Initial guess and boundary conditions for an M 5 9.5 shock
reflection at a a 5 308 wedge.

similar solution and the solution at t 5 1 of the initial-
value problem are plotted in Fig. 8. In this case the contact
discontinuity is sharper in the self-similar solution than the
solution of the initial value problem. Agreement between

FIG. 8. Self-similar solution for a 1D shock contact interaction using
the self-similar and the analytical solutions is observed.the implicit Godunov method.
The Ly norm of the residual is plotted in Fig. 9.

discontinuity is smoothed out. The convergence history for V. TWO-DIMENSIONAL EXAMPLES
the self-similar computation is plotted in Fig. 7.

A. Shock-Reflection
C. One-Dimensional Shock Contact Interaction

Presently we consider the problem of a strong shock
In this section we present the results of a one-dimen- reflection at a solid wedge. The shock Mach number is

sional shock contact interaction. We initialize a stationary M 5 9.5 and the wedge angle is a 5 308. This problem is
contact-discontinuity at x 5 0 with density r 5 1 (r 5 3) very similar to that considered by Berger and Colella [14]
for x , 0 (x . 0). This contact is hit by a shock moving except in their case the Mach number was M 5 10. The
from left to right with a shock Mach number M 5 1.5. At domain, V 5 [0, 15.625] 3 [0, 5] is discretized by a mesh
t 5 0 the shock hits the contact-discontinuity and under- of size 512 3 256. The mesh spacing in the h direction was
goes refraction. The reflected and the transmitted waves uniform while in the j direction it was uniform over a
are both shocks in this case. The solution to this problem domain [10.625, 15.625] and then geometrically stretched
is also self-similar and in fact the Euler equations can be in the domain [0, 10.625]. In Fig. 10, we show the initial
reduced to a set of algebraic equations which can be solved guess of the solution and boundary conditions. The shock
to yield the analytical solution [13]. The numerical self- moves at a speed Mc0 where c0 is the sound speed in the

unshocked gas. The shock is initialized as a straight line
given by j 2 j0 5 h tan a where j0 5 Mc0/cos (a). The
conditions behind the shock are indicated by 1 and are
obtained by the Rankine–Hugoniot jump conditions.

Since the initial guess was far from the actual solution,
initially we use a small value of the iteration parameter
g 5 0.001. This parameter is tunable and at the end of the
simulation this could be increased to g 5 0.005. For coarser

FIG. 11. Density contours for an M 5 9.5 shock reflection at a a 5FIG. 9. Residual for the shock-contact problem using the implicit
Godunov method. 308 wedge using the implicit EFM method.
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FIG. 12. Pressure contours for an M 5 9.5 shock reflection at a a 5

308 wedge, using the implicit EFM method. FIG. 16. Schematic of a two-dimensional shock contact-discontinu-
ity interaction.

meshes, g can take larger values. At present, we do not
have any prescription for g, except that its value is problem method that a slowly moving shock which is nearly aligned
dependent and chosen essentially by trial and error to get with the grid will exhibit numerical oscillations in the trans-
the best possible convergence rates. verse direction. In this case the slightly curved Mach stem

We compute this problem using both the implicit Godu- is nearly aligned with the grid and moves slowly on the
nov method and the implicit EFM method. The contour mesh while converging to a steady configuration in the
plots of the density and pressure for each of these methods self-similar coordinates. These transverse oscillations are
are shown in Figs. 11–14. It is well known for a Godunov clearly present and are in fact visible in the pressure (see

Fig. 14). The implicit EFM method gives equally good
quality results (Figs. 11–12) and, in addition, is devoid of
the aforementioned numerical oscillations. At conver-
gence, the Ly norm of the residual was less than 10210. It
is interesting to examine the self-similar Mach number
defined by Eq. (14). For this case, the contours of M̃ are
plotted in Fig. 15 with the dashed (solid) contours for
subsonic (supersonic) M̃ indicating regions of elliptic (hy-
perbolic) nature of the equations.

FIG. 13. Density contours for an M 5 9.5 shock reflection at a a 5
B. Shock-Refraction308 wedge using the implicit Godunov method.

In this section, we compute the solution of a shock wave
refraction at an oblique gaseous interface. The physical
situation may be characterized by a shock wave moving
from left to right and interacting with the inclined contact-
discontinuity (see Fig. 16). As long as the shock continues
to traverse the interface, the solution is self-similar. We
compute the specific case of a M 5 2.02 shock interaction
with the initially stationary contact-discontinuity inclined
at an angle a 5 608 to the plane of the shock. The pressure

FIG. 14. Pressure contours for an M 5 9.5 shock reflection at a a 5 on either side of the contact-discontinuity is unity while
308 wedge using the implicit Godunov method.

FIG. 15. Self-similar Mach number, M̃ [ (0.0, 12.3), for the 2D reflec-
tion problem using the implicit EFM method. The subsonic contours are FIG. 17. Boundary conditions and initial guess for the two-

dimensional shock contact-discontinuity interaction.shown as dashed lines.
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FIG. 19. Maximum residual for the continuity and the energy equa-
tion for the self-similar problem using the implicit Godunov method. The
grid size is 1536 3 768.

ambiguous whether this roll-up should have an infinite
number of turns.

Clearly the Mach stem (cross-section F) is very sharply
resolved by both the methods. The contact discontinuityFIG. 18. Density images for self-similar solution of the shock refrac-

tion process using the implicit Godunov method. Grid sizes: (A) 768 3 at cross-section E is spread over several computational
392 and (B) 1536 3 768. zones as seen in Fig. 22, while the pressure profile is contin-

uous and in fact almost constant across the contact disconti-
nuity at location E as seen in Fig. 23.

the density is r 5 1 (r 5 3) to the left (right). For the self-
1. Comparison with Initial-Value Computations. Juxta-similar solution the boundary conditions and the initial

position of initial value and the self-similar solutionsguess are shown in Fig. 17.
(which have been reflected about the j axis) for the coarseWe employ two mesh sizes: (A) ‘‘coarse’’—768 3 384
and fine meshes are shown in Fig. 24 and Fig. 25, respec-and (B) ‘‘fine’’—1536 3 768. For the implicit Godunov
tively. The initial value problem was solved until time t 5method, gray-scale density images are shown for the self-
1 for both meshes. It is well known that baroclinic genera-similar computation (Fig. 18). The convergence history for
tion of circulation occurs at the shocked contact discontinu-the fine mesh computation is shown in Fig. 19. The contours
ity [13] and so the shocked contact discontinuity is a vortexof M̃ are plotted in Fig. 20 and indicate regions of ellipticity
sheet. Linear stability analysis of a vortex sheet in com-and hyperbolicity of the equations.
pressible inviscid flow indicates instability if the convectiveFor the fine mesh, we also computed the solution using

implicit EFM. We examine a magnified juxtaposition of
the self-similar solutions obtained by the implicit Godunov
and implicit EFM in Fig. 21. Note the implicit Godunov
solution has been reflected about the j axis. Qualitatively
the two solutions look similar. A quantitative comparison
between the two methods is made by comparing the density
and pressure cross-sections taken at locations A–F in Fig.
21. These density and pressure cross-sections are shown
in Figs. 22 and 23.

A region of interest is the rolled up vortex sheet (actually
a vortex layer) near the lower wall. The cross-sections
A–D are taken through this structure. While the pressure
profiles show marked similarity between the implicit Godu- FIG. 20. Self-similar Mach number, M̃ [ (0.0, 4.79), for the 2D refrac-
nov and implicit EFM, the density cross-sections show a tion problem using the implicit Godunov Method. The subsonic contours

are shown as dashed lines.better resolution by the implicit Godunov method. It is
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equations as a boundary value problem. One of the meth-
ods was explicit while the other was implicit. For each of
these methods we employed either the Godunov technique
or the Equilibirum Flux Method to compute the fluxes. For
the implicit Godunov method and the implicit Equilibrium
Flux Method, the Jacobians were derived analytically.
These Jacobians are not only useful for the restricted class
of self-similar solution but have a wider applicability. For
instance, if one were to solve the initial value problem (3)
with an implicit method, we would need still the Jacobian
of the fluxes. In this case, the Jacobians of the fluxes (either
for the Godunov method or EFM) may be used if one
simply substitutes j 5 0, h 5 0 in the analysis in Appendixes
A and B.

Two-dimensional flows which exhibit self-similar solu-
tions such as shock reflection at a solid wedge or shock
refraction at a gaseous interface or shock diffraction over
a right angle corner are intuitively easier to comprehend
by examining the self-similar solution than a time-depen-
dent one because the number of independent variables in
the self-similar formulation is one less than the initial-valueFIG. 21. A juxtaposition of the density for the self-similar solution.

The top half is computed using implicit EFM while the lower half is formulation. Comparison of the implicit EFM and the im-
computed using the implicit Godunov method. The implicit Godunov plicit Godunov method, in the context of the two-dimen-
solution has been reflected about the j-axis. The grid size is 1536 3 768. sional refraction problem, suggests that these two com-A through F mark the cross-sections shown in the next two figures.

pletely diverse methods of computing the fluxes still yield
similar results albeit the EFM solution is more diffusive
than the Godunov method.

Mach number (Mc ) is less than unity [15]. In our specific Another clear advantage of the self-similar approach is
case, Mc is approximately 0.3 (see Ref. [13] to estimate Mc ) that, in general, in the self-similar solution the resolution
and hence the shocked contact discontinuity is a linearly of the discontinuities is sharper than the corresponding
unstable vortex sheet. Thus disturbances introduced at the initial-value solution. This is evident from an examination
grid level grow with time in the initial-value computation. of the self-similar solution of the Sod’s shock-tube problem
While absent or small for the coarse mesh, manifestations and the one-dimensional shock refraction problem, both
of the Kelvin–Helmholtz instability are clearly seen for of which exhibit a very sharp contact discontinuity.
the fine mesh in the neighborhood of the contact disconti- Finally, we conclude by repeating the conjecture of Sam-
nuity for the initial-value solution. On the other hand, the taney and Pullin [16] that the initial-value problem does
self-similar solution is devoid of the Kelvin–Helmholtz not appear to converge to a weak solution as the mesh is
instability for both the coarse and the fine mesh. Since the refined, owing to illposedness in the neighborhood of the
vortex sheet is linearly unstable, the self-similar solution shocked contact discontinuity or the vortex sheet. In con-
may be interpreted to be a solution of the compressible trast, the self-similar solution seems to converge with de-
Euler equations residing on an unstable manifold in some creasing mesh spacing to a weak solution, which we believe
function space. Samtaney and Pullin [16] have conjectured exists and is unique, although we note there are no exis-
on the nature of the initial-value solution and the self- tence and uniqueness proofs for multi-dimensional com-
similar solution when vortex sheets are present, in the limit pressible Euler equations. Thus, one may think of the self-
of zero mesh spacing. similar solution as residing on some unstable manifold or

as a basic state which is unstable.

VI. CONCLUSION

APPENDIX A: JACOBIAN FOR THE IMPLICIT
In this paper, we expressed the Euler equations as a GODUNOV METHOD

system of hyperbolic-elliptic partial differential equations
by employing the self-similar (j ; x/t, h 5 ; y/t) transfor- Consider a cell interface ĵ 5 constant. In the Godunov

method the flux F depends upon the left and right states,mation. We then developed two methods to numerically
obtain the self-similar solutions of the compressible Euler UL and UR , at the cell interface, i.e., F ; F(UL , UR ),
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FIG. 22. Cross-sections of density for the 2D refraction problem. Circles (squares) indicate implicit EFM (implicit Godunov method).

and is determined by solving a one-dimensional Riemann to the Riemann problem it is convenient to consider the
variables (r, u, p) since u and p are continuous across theproblem exactly. We seek the Jacobian of F with respect

to UL and UR . The solution to the Riemann problem is 2-wave and only a jump in the density occurs across the
2-wave. The Riemann data are QL 5 hrL , uL , pL jT anditself a self-similar solution, i.e., it depends only upon j 5

x/t. Let W(j) be the solution to the Riemann problem. QR 5 hrR , uR , pR jT. We denote the two constant states in
the solution by Q*L 5 hr*L , u*, p*jT and Q*R 5 hr*R , u*,Note that F in the self-similar formulation is equivalent

to the flux of mass, momentum, and energy through an p*jT. For the 1-rarefaction we have a continuum of con-
stant states bounded between the Uh,1 5 uL 2 cL andinterface whose speed itself is ĵ (see Eq. (7)). Therefore, it

is appropriate to use the solution of the Riemann problem Ut,1 5 u* 2 c*L characteristics. Likewise the states within
the 3-rarefaction are bounded by the curves Uh,3 5 uR 1along ĵ to compute the flux F. Thus, F ; F(UL , UR ) ;

F(W(ĵ)). cR and Ut,3 5 u* 1 c*R . We denote the states within the 1-
rarefaction and the 3-rarefaction by Q̃1 5 hr̃1 , ũ1 , p̃1 jT andThe solution to the Riemann problem consists of two

genuinely nonlinear waves (denoted as the 1-wave and 3- Q̃3 5 hr̃3 , ũ3 , p̃3 jT, respectively.
We solve the Riemann problem by a Newton–Raphsonwave) and one linearly degenerate contact discontinuity

(denoted as the 2-wave). There are four possible combina- technique. For further detail on the solution to the Rie-
mann problem, see the extensive discussion in Refs. [17,tions of the nonlinear waves: (a) S1 2 S3 , (b) S1 2 R3 ,

(c) R1 2 R3 , and (d) R1 2 S3 where S1 , S3 are respectively 18]. Table II gives the solution vector W at the location ĵ.
The procedure to calculate the Jacobian A of F witha 1-shock and a 3-shock while R1 , R3 are respectively

a 1-rarefaction and 3-rarefaction wave [17]. The case of respect to UK , K 5 L, R, follows.
R1 2 S3 is schematically depicted in Fig. 26. Let Ws,k , k 5
1, 3, denote the speed of the 1-shock and 3-shock. Let Uh,k

and Ut,k , k 5 1, 3, denote the speeds of the head and tail A ; S ­F
­UK

D . (A1)
of the rarefaction, respectively. In evaluating the solution
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FIG. 23. Cross-sections of pressure for the 2D refraction problem. Circles (squares) indicate implicit EFM (implicit Godunov method).

We rewrite A as where q2 5 u2 1 v2, and

A 5 S ­F
­WD S ­W

­QK
D S­QK

­UK
D , (A2) ­QK

­UK
5

where

W 5 hr, u, v, pjT, (A3) 1 0 0 0

QK 5 hrk , uk , vk , pk jT, (A4) 2
uK

rK

1
rK

0 0

UK 5 hrk , rkuk , rkvk , Ek jT. (A5) ,
0 rKvK2

vK

rK
0

2(c 2 1) uK

It is straightforward to derive the first and third terms in
the above product of Jacobians. These are 2(c 2 1) vK (c 2 1)(c 2 1)

q2
K

2

3 4
(A7)­F

­W
5

where q2
K 5 u2

K 1 v2
K .

Consider the entries in the Jacobians ­W/­QK , K 5 L,
R. If W(ĵ) 5 QL (W(ĵ) 5 QR ) then the Jacobian is trivially
given by

u 2 ĵ

u(u 2 ĵ)

(u 2 ĵ)v

q2

2
(u 2 ĵ)

r

r(2u 2 ĵ)

rv

q2

2
1 ru(u 2 ĵ) 1

c
c 2 1

p

0

0

r(u 2 ĵ)

rv(u 2 ĵ)

0

1

0

cu 2 ĵ

c 2 1

,3 4
S ­W

­QL
D5 I(0), S ­W

­QR
D5 0(I). (A8)

(A6)
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FIG. 26. Solution to the Riemann problem has four combinations of
the genuinely nonlinear waves. In this schematic the 1-wave is a rarefac-
tion R1 , and the 3-wave is a shock S3 . The linearly degenerate wave or
the contact-discontinuity is depicted as C.

FIG. 24. A zoom of juxtaposition of the density for unsteady solution
and the self-similar solution. The grid size is 768 3 384. The self-similar If W 5 Q*L then the Jacobian is given by
solution obtained by the implicit Godunov method has been reflected
about the j-axis.

­W
­QK

5

­r*L
­rK

­r*L
­uK

­r*L
­vK

­r*L
­pK

­u*
­rK

­u*
­uK

­u*
­vK

­u*
­pK

­v*
­rK

­v*
­uK

­v*
­vK

­v*
­pK

­p*
­rK

­p*
­uK

­p*
­vK

­p*
­pK

. (A9)3 4
If W 5 Q*R then replace r*L in the first row above by r*R .
If W 5 Q̃1 or W 5 Q̃3 then replace (rL , u*, v*, p*) by
(r̃l , ũl , ṽl , p̃l ) where l 5 1, 3 depending upon whether
W 5 Q̃1 or W 5 Q̃3 .

Note that the tangential velocity, v, in the solution to
the Riemann problem is chosen to be v* 5 vL (v* 5 vR )
if u* . ĵ (u* , ĵ). All the entries in the Jacobian involving
the derivative of the tangential velocity with respect to the
density, normal velocity, and pressure are then zero. The
entries in the Jacobian which are the derivative of v* with
respect to vK are then

­v*
­vK

5 0(1), K 5 L(R) if u* , ĵ, (A10)
FIG. 25. A zoom of juxtaposition of the density for unsteady solution

and the self-similar solution. The grid size is 1536 3 768. The self-similar
solution obtained by the implicit Godunov method has been reflected ­v*

­vK
5 1(0), K 5 L(R) if u* . ĵ. (A11)

about the j-axis.
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TABLE II

Solution of the Riemann Problem at ĵ

W(ĵ) S1 2 S3 S1 2 R3 R1 2 R3 R1 2 S3

QL ĵ , Ws,1 ĵ , Ws,1 ĵ , Uh,1 ĵ , Uh,1

QR ĵ . Ws,3 ĵ . Uh,3 ĵ . Uh,3 ĵ . Ws,3

Q*L Ws,1 , ĵ , u* Ws,1 , ĵ , u* Ut,1 , ĵ , u* Ut,1 , ĵ , u*
Q*R u* , ĵ , Ws,3 u* , ĵ , Ut,3 u* , ĵ , Ut,3 u* , ĵ , Ws,3

Q̃1 — — Uh,1 , ĵ , Ut,1 Uh,1 , ĵ , Ut,1

Q̃3 — Ut,3 , ĵ , Uh,3 Ut,3 , ĵ , Uh,3 —

Note. The execution time is given in seconds for the Intel Paragon. The number in the bracket is the speed-up which is normalized to unity for
four processors.

The other entries in the Jacobian are found by solving a Linearizing we get
linearly perturbed Riemann problem described below.

2
c*L

(c 2 1)r*L
r*9L 1 u*9 1

c*L
(c 2 1)p*

p*9

1. Linearly Perturbed Riemann Problem

Let the left and right states be perturbed infinitesimally 5 2
cL

(c 2 1)rL
r9L 1 u9L 1

cL

(c 2 1)pL
p9L , (A16)

to QL 1 Q9L 5 (rL 1 r9L , uL 1 u9L , pL 1 p9L ) and QR 1
Q9R 5 (rR 1 r9R , uR 1 u9R , pR 1 p9R ). We seek the perturbed

2
cp*

r*(c11)
L

r*9L 1
1

r*c
L

p*9 5
cpL

rc11
L

r9L 1
1

rc
L

p9L .solution by linearizing about the unperturbed solution to
the Riemann problem. Let the perturbed solution in the
constant regions between the nonlinear waves and the
2-wave be Q*L 1 Q*9L 5 (r*L 1 r*9L , u* 1 u*9, p* 1 p*9)

b. 3-Rarefaction R3and Q*R 1 QR*9 5 (r*R 1 r*9R , u* 1 u*9, p* 1 p*9). Consider
each nonlinear wave separately. The same equations hold as for the above case, except

that the second term in the Riemann invariant equation
has the opposite sign. The linearized equations are

a. 1-Rarefaction R1

For the unperturbed solution, writing the Riemann in- c*R
(c 2 1)r*R

r*9R 1 u*9 2
c*R

(c 2 1)p*
p*9

variant and the isentropic conditions gives us the equations

5
cR

(c 2 1)rR
r9R 1 u9R 2

cR

(c 2 1)pR
p9R , (A17)

u* 1
2

c 2 1
c*L 5 uL 1

2
c 2 1

cL , (A12)

2
cp*

r*(c11)
R

r*9R 1
1

r*c
R

p*9 5 2
cpR

rc11
R

r9R 1
1

rc
R

p9R .p*
r*c 5

pL

rc
L

. (A13)

c. 1-Shock S1

For the perturbed solution, we get
For a 1-shock, the following three jump conditions hold

for the unperturbed solution,

u* 1 u*9 1
2

c 2 1
(c* 1 c*9) 5 uL 1 u9L 1

2
c 2 1

(cL 1 c9L ),
r*L(u* 2 Ws,1 ) 5 rL(uL 2 Ws,1 ), (A18)

p* 1 r*L(u* 2 Ws,1 )2 5 pL 1 rL(uL 2 Ws,1 )2, (A19)

p* 1 p*9

(r*L 1 r*9L )c
5

pL 1 p9L

(rL 1 r9L )c
. (A15) h*L 1

1
2

(u* 2 Ws,1 )2 5 hL 1
1
2

(uL 2 Ws,1 )2, (A20)

(A14)
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where h 5 cp/(c 2 1)r is the enthalpy for a perfect gas.
5 S2

c
(c 2 1)

pL(rL 2 r*R )
r2

R
D r9RUpon perturbation the jump conditions become

1 ((rR 2 r*R )(uR 2 Ws,3 ) 2 rR(uR 2 u*))u9R ,(r*L 1 r*9L )(u* 1 u*9 2 Ws,1 2 W 9s,1 )

5 (rL 1 r9L )(uL 1 u9L 2 Ws,1 2 W 9s,1 ), (A21)
1 S c

(c 2 1)
(rR 2 r*R )

rR
D p9R .

p* 1 p*9 1 (r* 1 r*9)(u* 1 u*9 2 Ws,1 2 W 9s,1 )2

Once the nonlinear wave combination is determined to5 pL 1 p9L 1 (rL 1 r9L )(uL 1 u9L 2 Ws,1 2 W 9s,1 )2, (A22)
be one of the four choices, we have four linear equations
in four unknowns namely, r*9L , r*9R , u*9, p*9. The aboveh*L 1 h*9L 1

1
2

(u* 1 u*9 2 Ws,1 2 W 9s,1 )2

system of equations can be summarized as

[A](r*9L , u*9, p*9)T 5 [C](r9L , u9L , p9L )T, (A26)5 hL 1 h9L 1
1
2

(uL 1 u9L 2 Ws,1 2 W 9s,1 )2. (A23)

[B](r*9R , u*9, p*9)T 5 [D](r9R , u9R , p9R )T, (A27)
In the above equations W 9s,1 is the perturbation to the shock
speed. Linearizing the above equations and eliminating where [A], [B ], [C ], [D ] are 2 3 3 matrices. The elements
W 9s,1 and the enthalpy terms by using the thermodynamic of these matrices are the appropriate coefficients of r*9L ,
relation for enthalpy we get the linear equations. r*9R , u*9, p*9. Thus for example if the nonlinear wave com-

bination was R1 2 S3 then Eq. (A16) and Eq. (A25) can
be written in the form of Eq. (A26) and Eq. (A27).(u* 2 Ws,1 )2r*9L 1 2r*L(u* 2 Ws,1 )u*9 1 p*9

Solve for (r*9L , r*9R , u*9, p*9) by setting (r9L , u9L , p9L ) to
(1, 0, 0), (0, 1, 0), and (0, 0, 1) in Eq. (A26) and setting5 (uL 2 Ws,1 )2r9L 1 2rL(uL 2 Ws,1 )u9L 1 p9L ,
the right hand side of Eq. (A27) to zero. Therefore, when
(r9L , u9L , p9L ) 5 (1, 0, 0) then the solution (r*9L , r*9R , u*9,S2

c
(c 2 1)

p*(rL 2 r*L )

r*2
L

D r*9L p*9) represents the entries (­r*9L /­rL , ­r*9R /­rL ,
­u*9/­rL , ­r*9/­rL ) in the Jacobian (­W/­QL ).

Similarly, the Jacobian (­W/­QR ) is obtained by setting1 ((rL 2 r*L )(u* 2 Ws,1 ) 2 r*L(uL 2 u*))u*9
(r9R , u9R , p9R ) to (1, 0, 0), (0, 1, 0), and (0, 0, 1) in Eq. (A27),(A24)
the right hand side of Eq. (A26) to zero, and solving for

1 S c
(c 2 1)

(rL 2 r*L )

r*L
D p*9

(r*9L , r*9R , u*9, p*9).
There are still two special cases which must be consid-

ered. These are the transonic rarefaction cases, i.e., cases5 S2
c

(c 2 1)
pL(rL 2 r*L )

r2
L

D r9L
for which u 2 ĵ is equal in magnitude to the sound speed.
The solution to the Riemann problem at ĵ could very well

1 ((rL 2 r*L )(uL 2 Ws,1 ) 2 rL(uL 2 u*))u9L , lie within a 1-rarefaction or a 3-rarefaction. If W(ĵ) lies
inside the 1-rarefaction, then using ũ1 2 ĵ 5 c̃1 we get the
following additional linear equations1 S c

(c 2 1)
(rL 2 r*)

rL
D p9L .

d. 3-Shock S3
2

c 1 1
c 2 1

c̃1

2r̃1

r̃91 1
c 1 1
c 2 1

c̃1

2p̃1

p̃91 52
c*L

(c 2 1)r*L
r*9L 1 u*9

For a 3-shock, the linearized equations are

(u* 2 Ws,3 )2r*9R 1 2r*R(u* 2 Ws,3 )u*9 1 p*9
2 ĵ 1

c*L
(c 2 1)p*

p*9,

5 (uR 2 Ws,3 )2r9R 1 2rL(uR 2 Ws,3 )u9L 1 p9L , (A28)

S2
c

(c 2 1)
p*(rR 2 r*R )

r*2
R

D r*9R 2
cp̃1

r̃(c11)
1

r̃91 1
1

r̃c
1

p̃91 5 2
cp*

r*(c11)
L

r*9L 1
1

r*c
L

p*9, (A29)

1 ((rR 2 r*R )(u* 2 Ws,3 ) 2 r*R(uR 2 u*))u*9

ũ91 5
c 2 1
c 1 1

u*9 1
c*L

(c 1 1)p*
p*9 2

c*L
(c 1 1)r*L

r*9L .(A25)
1 S c

(c 2 1)
(rR 2 r*R )

r*R
D p*9 (A30)
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These equations are solved for r̃91 , ũ91 , and p̃91 in terms of where
r*9L , u*9, and p*9. If W(ĵ) lies inside the 3-rarefaction, then
using ũ3 2 ĵ 5 2c̃3 we get the linear equations W 6 5

1 6 erf((u 2 j)/cp )
2

, (B3)

c 1 1
c 2 1

c̃3

2 p̃3

p̃3 2
c 1 1
c 2 1

c̃3

2p̃3

p̃93 D 6 5 6
1

2Ïf
exp ((u 2 ĵ)2/c2

p ), (B4)

Ṽ 6 5 (u 2 ĵ)W 6 1 cp D 6, (B5)
5

c*R
(c 2 1)r*R

r*9R 1 u*9 2 ĵ 2
c*R

(c 2 1)p*
p*9, (A31)

while h0 is similar to the total enthalpy and is given by
2

cp̃3

r̃(c11)
3

r̃93 1
1

r̃c
3

p̃93 5 2
cp*

r*(c11)
R

r*9R 1
1

r*c
R

p*9, (A32)

h0 5
1
2

((u 2 ĵ)2 1 v2 ) 1
c

2(c 2 1)
c2

p . (B6)

ũ93 5
c 2 1
c 1 1

u*9 2
c*R

(c 1 1)p*
p*9 1

c*R
(c 1 1)r*R

r*9R . (A33)

cp is the most probable speed, i.e.,

These equations are solved for r̃93 , ũ93 , and p̃93 in terms of
r*9R , u*9, and p*9. cp 5 (2RT)1/2, (B7)

Among the implicit methods found in the literature we
would like to bring to the notice of the reader the implicit-

where R is the gas constant and T is the temperature.explicit Godunov method developed by Collins et al. [19].
Define Q ; hr, u, v, cp jT. It is convenient to express theIn this implicit-explicit Godunov method, the flux function

Jacobian as (dropping the 6 superscript)is a hybrid with the explicit part computed by the Godunov
method and so their method does not involve the Jacobian
of the Godunov flux function. S­F

­UD5 S­F
­QD S­Q

­UD . (B8)
APPENDIX B: JACOBIAN FOR
THE IMPLICIT EFM METHOD

The basic idea of the Equilibrium Flux Method [7] is The Jacobian S­Q
­UD is

as follows: in the limit of an infinite collision rate in the
Boltzmann equation, the distribution of molecular veloci-
ties everywhere would tend asymptotically towards the 1 0
equilibrium distribution determined by the total mass, mo-
mentum, and energy within a computational cell. If the
velocity distribution were known to be the Maxwellian

­Q
­U

5
2

u
r

1
rdistribution then the fluxes of the conserved quantities

could be calculated. In the EFM method, the flux F at a

0cell interface ĵ is also a function of the left and right states 2
v
rat the cell boundary and is written as

F ; F(UL , UR ) 5 F 1(UL ) 1 F 2(UR ), (B1) 2 (c 2 1)
u

rcp

cp

2r
S(c 2 1)

(u2 1 v2 )
c2

p
2 1D3

where F 1(U) and F 2(U) are given by

0 0

0 0

F 6 5

rṼ 6(; F1 )

ruṼ 6 1
rc2

p

2
W 6(; F2 )

rvṼ 6

rh0Ṽ 6 2
1
4

rc 3
pD 6 2

1
2

ĵ 2F1 1 ĵF2

, (B2)
rv 0

2(c 2 1)
v

rcp

(c 2 1)
rcp

(B9)4 .3 4
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It can be shown that the Jacobian (­F/­Q) is S­V
­j
D

i
5 [L ]21

i minmod (Ṽi , Ṽi11 , Ṽi21 ), (C2)

Ṽ rW

r(Ṽ 1 uW 1 cpD) where Ṽi1k 5 [L ]iVi1k , k 5 21, 0, 1, is the projection of
­F
­Q

5
uṼ 1

c2
p

2
W

V onto the characteristic space, and the minmod function
provides the slope limiting [21]. The matrix of left eigenvec-vṼ rvW
tors of the Jacobian ­F/­V is [L ] given by

f41 f42

3
0 rD

0 r(cpW 1 ĵD)
[L ] 5

0
r

2
0 2

1
2c

c 0 0 2
1
c

0 0 1 0

0
r

2
0

1
2c

. (C3)
rṼ 0

f43 f44

(B10)

4 . 3 4
where

Given VL , VR the conserved quantities UL , UR at the left
f41 5 h0Ṽ 2

1
4

c3
pD 1

1
2

ĵc2
pW, and right of the cell interface are trivially obtained.

f42 5 ruṼ 1 rh0W 1
1
2
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